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NOMBAS - A Bayesian Procedure for Selecting the Greatest Mean

by

Alan R. Washburn

Introduction : Suppose that an experimenter must choose one category out of

k after making a limited number of performance tests. The experimenter's

goal is to select the category with the greatest mean performance. The cate-

gories could represent anything from competing aircraft designs to feed sup-

plements; whatever the interpretation, the statistical problem is usually

referred to as being one of "greatest mean selection". Several testing pro-

cedures are available in the literature [2,6,8]. The purpose of this paper

is to propose a new one (NOMBAS) and compare it with certain others.

If the experimenter were to test each category a fixed number of times,

he would typically discover at the end of testing that some of the categories

have experimental means that are so small that he would regret having tested

them so much. This suggests that substantial gains might be possible by using

a sequential procedure wherein the category to be tested next and perhaps even

the decision to stop testing depend on results achieved so far. This is what

we have in mind. More precisely, NOMBAS is a procedure where at every stage

the mean performance for each category is regarded as a normal random variable,

Initial values for the mean and variance of the mean performance for each

category must be provided by the experimenter. Whenever testing stops, the

experimenter simply selects the category with the largest current mean. If

testing is to be continued, the experimenter tests the category for which the

expected gain from one more test is maximal; this procedure is "myopic"

because there will typically be several tests yet to be made. If each test

involves a normally distributed experimental error, then it is elementary to



apply Bayes' Theorem to obtain "revised" values for the mean and variance of

the tested category, after which the procedure is repeated until finally the

decision to stop testing is made. All this will be formalized below; our hope

at this point is merely to have explained the source of the acronym NOrmal

Myopic BAyes Sequential procedure.

In making Bayesian calculations based on normal distributions, we are

following [14]. The pervasive assumption of normality is perhaps not as re-

strictive as it might seem at first sight. Recall that the experimenter's pur-

pose is to select the category with the greatest mean. If testing consists

of making a sequence of independent observations, then it is inevitable that

the choice of which category to select will be based on the experimental means

of the observations for each category. By the Central Limit Theorem, the ex-

perimental means themselves, being sums of independent random variables, tend

to be normal even if the individual observations are not. So there is reason

to hope that the NOMBAS procedure may be robust with respect to deviations from

normality. This is one of the issues that will be explored numerically below,

but first we will describe NOMBAS in more detail.

The NOMBAS procedure

Let e . be the mean performance of category i . For all i , we assume

2 2
that 9. is normal with mean 9. and variance a. . Let 9.. and a..

1 10 10 1J 1J

be the mean and variance of 0. given the results of the first j tests;

j • 1. If the j_th test is made on category i , we assume that the observed

result of that test is Z. = 0. + W. , where W. is normal with mean
J i J J

2
(this is no loss of generality) and known variance s . . , and independent of

9,,...,9, , WL,...,W. . . By using either Bayes' Theorem or the update equations

of a Kalman Filter [5], one can show that for the category tested and j 2. 1>



2 2
(2) o.. = p.. o . . t , where

(3) p.. = s
2
./(s

2
. + a

2
. .) .

2 2
For any category i not tested on test j , 9.. = 6. and a.. = a. « - .

Furthermore, conditional on the results of the first j tests, all of the

9. are normal and independent of each other.

If the j th test is the last one, then NOMBAS selects category *, where

9^. = max .9 . . . If exactly one more test of category i ^ * were made, the

gain from that test would be G., = max(0, 9. ... - 9..), since the larger of
ij i,j+l *j 6

9. , ,, and 9.. would be selected after the test. Given the results of the

first i tests, 9. .

.

n
- Q. . is normal with mean 9.. - 9.. and variance

x,j+l *j ij *j
/ o o

(1-p. ..t) (o..+s. , 11 )=a../(a.. + s. .,J, so the expected value of
*i,j+l ij i,j+l ij ij i,J+l

G. . is

(4) g.. e E(G..) = a.. F(6../o..), where
ij il iJ iJ ij

(5)
°ij

= a
ij

//a
ij

+s2
i, j+l •

and

(6) 6. . = 9. . - 9 , and
ij *3 ij

(7) F(y) = / (x - y)dcf>(x) (see the last section)

y

Equations (4) - (7) also hold for i = *, provided 6^. is taken to be the

(non-negative) difference between the largest and second largest of the

9. . ; i = 1,. . .k.



We now distinguish two versions of the NQMBAS procedure: NOMBASN makes

exactly n tests, with test j being on the category for which g is

largest. NOMBASG stops testing unless g^ . >_ g > , in which case the jth

test is on category * . Each procedure has a parameter associated with it

that determines when to stop; n in the case of NOMBASN and g in the case

of NOMBASG.

Selection of Competing Procedures

Testing procedures for the greatest mean selection problem can be roughly

categorized according to whether the number of tests performed is fixed or

random, and also according to whether the order of testing is fixed or random.

Let us adopt the notation RF for procedures where the number of tests is

random but the order is (or could be) fixed, etc. An example of an FF pro-

cedure is the procedure of testing each category a fixed number of times and

then selecting the category with the largest experimental mean [1]. Examples

of RF procedures are those of Bechhofer, Kiefer, and Sobel [2], and also

Blumenthal [3]. NOMBASN is the only FR procedure known to the author. The

procedures of Paulson [11] and Stein [13] each involve the idea of eliminating

certain categories as testing proceeds; like NOMBASG, they are RR procedures.

Since the RR procedures were expected to dominate the other classes, all

three of the RR procedures were compared. The other two (there were five in

total) were NOMBASN and the FF procedure called FIXED. We describe FIXED,

PAULSON, and STEIN in detail below. The five procedures will be compared by

showing how the Bayes risk depends on average sample number for each. Specifi-

cally, let I be the index selected, let L = max. 6. -6, , and let N be11 I

the number of tests. Then E(L) is the Bayes risk and E(N) is the average

sample number.



The FIXED procedure:

In this scheme, the k categories are tested cyclically in the order

1,2, . . . ,k,l, . . . . After a total of n tests, the category with the greatest

experimental mean is selected, counting the experimental mean as 6. for any

untested category. For n = km, where m is an integer representing the number

of times each category is tested, a simple expression for E(L) can be deter-

mined for the case where 0. is standard normal and s.. = s for all i, i

as follows: Harter [7] has tabulated y = (average of the largest of k

independent unit normals), so u., is the best average gain achievable with

2
perfect knowledge. Since m observations with variance s are equivalent to

2
one observation with variance s /m , each category has variance

o

°i,km = (s /m)/(s /m + 1) = s /(s + m) 5 a associated with it after km

observations, from (2) and (3). Since 6. is standard normal and also normal

2
with mean . , and variance a , . , must be normal with mean and

i,km i,km
2

variance 1 - a . The expected value of the largest of the 0. is

therefore y /l - o , and hence

(8) E(L) = u
lk

1 - A - o''

For k = 10 and s = .5 , this reduces to

(9) E(L) = 1.53875 (1 - /(m/(m + .25))

Formula (9) is consistent with the FIXED curve in Figure 1, with m = 1

corresponding to E(N) = 10, etc. The FIXED curve was obtained by simulation,

like all the others.



The PAULSON procedure:

Paulson's [10] procedure irrevocably eliminates categories until only one

is left, testing all surviving categories at each stage. After r stages,

let Z be the average of the r measurements that have been made on each
1

category i that survived the first r-1 stages, and let Z^ be the largest

of these. If Z . < Z u + A - a^ /r , category i is eliminated at the rth
1 * A

stage. The maximum number of stages is clearly a /A rounded up to the next
A

integer, since by then all categories except the largest have been eliminated.

Paulson's procedure has two parameters - A and a . He shows in [10] that
A

2
if s.. = s for all i,j, and if a = [s /(A - A)] log((k - l)/a) , then

ij A

his procedure will select the category with the largest mean with probability

at least 1 - a, provided the largest mean exceeds the next largest by at least

A > 0, for any A in the interval (0, A).

We take Paulson's recommendation [11] and set A = (3/8) A. The procedure

PAULSON has a = .1 , which leaves one parameter (A) free. E(L) increases with

A and E(N) decreases with A ; the curves labelled PAULSON in Figures 1-3 were

generated parametrically by varying A . Since PAULSON tests each category at

least once, E(L) is not defined for E(N) < 10 in our examples. Limited testing

with a 4 .1 did not reveal a significantly better value for a over the

range of E(N) considered.

The STEIN procedure:

Reference [13] is reproduced in its entirety below.

"Suppose X.., i = 1,..., p;j = 1,2,... are independently normally distrib-

2
uted with means E, . + n . and variances a. where £ . , n . are unknown but

1 J J i J

2
a. are known. €, a are fixed numbers, with 0<€, 0<a<l. It is
J

'

desired to select, by a sequential procedure, in which we take first the

observations with second subscript 1, etc. an integer M among l,...,p



such that for every k = 1,..., p and ^ 1> ...C , n-,, n
?

, • . • satisfying

5, = £. + € for all p ^ k, P(M = k) =£ 1 - a. In accordance with the

following rule, one decides at each stage (after the observations with

second subscript n) to take no more observations with certain first

subscripts. For each n = 1,2,... and each t = 1,..., p compute

n _ €(t, - 1)
9

where X. is the average of the observations with second subscript j

and t. is the number of such observations. Continue taking observations

X« ,-,••• for those t for which this expression is greater than (-tna)/€
£,n+l

but not for the others. Eventually there will be at most one subscript

t = l,...,p for which one continues to take observations and if there is

one this is chosen to be M. If there is none, the t for which the sum

is largest is chosen to be M. This procedure is a straight-forward

application of the Lemma on p. 146 of Wald's SiqadWbLaZ Analysis and

generalizations can easily be found."

In our case X.. = 6. + W. and n .
= for all i, j . Stein's procedure

has two parameters — a and € . Our procedure STEIN is Stein's with a = .1 ;

this leaves 6 free to parametrically generate E(L) vs. E(N) . As in the case

of PAULSON, limited testing did not reveal a significantly better value for a

over the range of E(N) considered.

Results

Figure 1 shows E(L) vs. E(N) for the five competing procedures. In all

cases k = 10, s.. = .5 for all i, j, and 6. =0 and o = 1 for all i .

i~j 10 io

The random variables 6. and W. were generated as assumed by NOMBAS using

the LLRANDOM random number generator [9]. Note that NOMBASN dominates FIXED



and that NOMBASG dominates all other procedures in this example. Results are

based on 5000 replications in all cases; a 68% confidence interval is shown in

the shape of an I for a set of points that is incomplete but hopefully large

enough to indicate sampling variability without cluttering the figure. An

additional run was made for a procedure called N0MBASG2 in which all random

variables were generated as above but a. =2 for all i . The curve for

N0MBASG2 was indistinguishable from the curve for NOMBASG, indicating that the

typical robustness of Bayesian procedures with respect to assumptions about the

prior holds in this case.

Figure 2 shows the effect of making the random variables 6. exponential

with mean 1, while setting 9. = a. = 1 in NOMBAS. The five procedures° XO 10

dominate each other in the same order as in Figure 1, except that STEIN is now

better than NOMBASN. This is evidence that NOMBAS is robust with respect to

the shape as well as the scale of the prior.

Figure 3 shows a comparison of the five procedures in attempting to select

the Poisson distribution with the greatest mean. The means of the 10 Poisson

distributions were taken to be exponential with mean 4, while setting

a. =6. = 4 in NOMBAS. Since the variance of a Poisson random variable is
10 10

the same as the mean, whereas NOMBAS assumes the parameter s.. to be given

independently of the mean, there is clearly no logical way to determine s..

in this case. It was decided to set s.. = 2 for all i, j, on the grounds

that the means are all "roughly" 4, and /4 = 2 . This thinking is imprecise,

but that is really the point: NOMBAS appears to be robust with respect to

problems of this type. Figure 3 shows that the order of dominance is as in

Figure 2.

One might at this point entertain the hypothesis that NOMBASN and NOMBASG

are actually optimal: NOMBASN minimizing average loss within the class of



procedures where the number of tests is fixed, and NOMBASG minimizing average

loss within the class where the number of tests is fixed on the average. These

hypotheses are false. The next section documents a counterexample; it can

be skipped without loss of continuity if the reader desires.

NOMBAS is not optimal

We first give an example showing that NOMBASN is not optimal when n = 2.

Suppose k = 3, £o = (Jl, 1//2, 0), Q_ = (0,1,1), and s.. = 1 for all i, j.

The first category has a small mean and a large variance, the second has a

large mean and a small variance, and the third should never be tested because

a„ = 0. Using (4) with 6 _ = 1, 6 = 0, a = 2//3, and a
?
» = 1/^6, we find

that gin
= .123 and g__ = .162, so category 2 should be tested if n = 1,

and would be the first category tested by NOMBASN in any case. Let 6_
1

be

the mean of X„ given the results of this test, and let g(0 ?1 ) be the dif-

ference (average gain from making the second test on category 1) - (average

gain from making the second test on category 2). Then, since a
?1

= 1//12 ,

(10) g(6
21

) = <

g±1
- (i//i2)F((i - e

21
)^i2) if e

21
< 1

(2//3)F(6
21

/3/2) - (l//l2)F((e
21

- 1) /l2) if 6^ > 1

Since F(«) is decreasing, the minimum of g(8 ) when 6 £ 1 is g(l),

which is positive. g(6 ) is also positive for 6 _> 1, since it is

asymptotically and has a unique critical point (a maximum) at 0_
1

= 4/3.

So NOMBASN will make the second test on category 1 regardless of the outcome

of the first test on category 2.

The procedure (call it P) that tests the categories in the order 1, 2 is

equivalent to NOMBASN, since the two procedures do the same tests. Now consider

the procedure P' that first tests 1 and then tests the category with the



largest gain. Since a - > o„
n , P' will test 1 again if 6 .. = 1, and

will therefore test 1 again with positive probability. So P' is strictly

better than NOMBASN. This establishes that NOMBASN is not optimal in general.

Essentially the same example can be used to show the non-optimality of NOMBASG,

since NOMBASG can be forced to make exactly two tests by selecting a gain cut-

off g that is so small that at least two tests will be made, while simulta-

neously assuming that s.. is so large for j > 2 that at most two tests will

be made. The possibility remains that NOMBASG might be optimal for the case

where s.. does not depend on j , but NOMBASG is not optimal in general.

Practical Considerations

The fact that NOMBASG dominates all other procedures in the sense we have

described is not necessarily conclusive, even for problems that closely resemble

the example we have used. NOMBASG is Bayesian and sequential, so the usual

arguments about Bayesian vs. traditional and sequential vs. non-sequential

decision procedures apply. It is not our intention to resurrect those arguments

here. However, NOMBAS has some unique difficulties that should be appreciated

by anyone tempted to use it.

NOMBAS makes tests one at a time. This is the source of its power, but

it is also potentially a source of difficulty. Making tests in batches may

have advantages in terms of speed, cost, or constancy of experimental conditions.

Any of these factors could be decisive in a given application. However, we

suggest that one class of applications where these factors are typically absent

is in selection of the best of several large Monte-Carlo computer simulations;

in fact, it was just such an application that suggested the NOMBAS procedure

in the first place. In that application ten different Monte Carlo simulations

(actually one computer program with ten different sets of gun parameters) were

available of a defensive gun being attacked by a large number of attackers.

10



The intention was to select the gun that destroyed the greatest number of

attackers before being overwhelmed, on the average. The process of writing and

debugging the program provided the initial estimates required.

A critical problem in the use of NOMBASG is the selection of the parameter

g . It might be reasonable to ask the experimenter to estimate the amount of

gain g' in the selected mean that would be just marginally worth the cost of

a single test; i.e., the absolute slope of the E(L) vs E(N) curve at the desired

E(N). Unfortunately, there is usually a great difference between g' and g .

To obtain the point where E(N) = 30 in Figure 1, for example, it is necessary

_Q
to take g = 1.3 x 10 . The absolute slope of the NOMBASG graph of E(L) vs

-4
E(N) at that point is g' = 5.2 x 10 . The great disparity between these two

numbers is connected with the fact that the sequence max. g.. is typically

not monotonically decreasing in j ; i.e., the fact that a large gain is not

likely on the current trial does not rule out the possibility in the future.

Unfortunately, this "explanation" provides no rule of thumb by which g might

be obtained from g' . Only a qualitative statement can be made: NOMBASG is

remarkably reluctant to make tests, and therefore most experiments should be

made with a remarkably small number g . The only redeeming feature is that

NOMBASG is not very sensitive to g anyway; Figure 1 shows that changes of

several orders of magnitude in g are required to increase E(N) from 30 to 40

or decrease E(N) from 30 to 20.

In many cases, the experimenter may have a rough idea of how many tests

should be performed, as well as some possibly conflicting feelings about ac-

ceptable terminal states. For such an experimenter we suggest the following

NOMBAS procedure, which capitalizes on the fact that NOMBASN and NOMBASG make

tests in the same order, and that the Bayes' calculations (1) - (3) are valid

even if the tests are not performed in NOMBAS order.

1. Make the required estimates of 6 . , o. , and s.. ; i = l,...,k ,M 10 10 1J

j _> 1. Typically, s.. will not depend on j .

11



2. Perform a small number j of tests. These tests could be made in

NOMBAS order, or, in case the idea of being "fair" to all categories

is important, they could be spread evenly over the categories. Use

equations (1) - (3) for each test and also (4) - (7) if NOMBAS order

is used. Calculate 8.. , a.. , and g . . ; i = l,...,k.

3. Examine the calculations to determine whether testing should be con-

tinued. The runners-up to the largest of the g. . should not be ignored

(as NOMBAS does) ; the presence of close runners-up is a motive for

continuation. The fact that 6.. and a., have well defined meanings

should be an aid in making the decision. If no further testing is

appropriate, select the largest of the 6.. . Otherwise, return to

step 2.

The above procedure is intended to be a compromise between NOMBASN and NOMBASG,

and is probably somewhere between them in effectiveness.

The fact that NOMBAS is a Bayesian procedure has some practical advantages.

Suppose that category * were revealed to be best after a limited amount of

testing. This might cause a closer examination of category *
, and it might turn

out that category * was tested incorrectly — an error in coding might be

the reason if * were a computer simulation. If the other categories were

not in error, then the experiment could be continued by correcting the error

in *
, resetting 6, . and o . . to , and a, , and then continuing to make

*-} *J
XQ XQ

tests in NOMBAS order. The testing already done on non- * categories would

not have to be wasted by starting the whole experiment over, and the experiment

could be continued using the originally intended logic.

Finally, and to the extent that general conclusions are justified by

experiments such as those we have described:

1. If the number of tests must be fixed, then NOMBASN is substantially

better than FIXED.

12



2. If a sequential experiment is acceptable, and if NOMBAS is rejected

on account of its Bayesian origins, then PAULSON is better than

STEIN.

The function F(y )

It is not difficult to show that the function F(y) defined in (A) can be

expressed as

(11) F(y) = / (x - y) d$(x) = <Ky) - y(l " *>(y)) ,

y

since the right and left-hand sides are both asymptotically and have the

same derivative with respect to y. Since the cumulative normal function $(y)

is widely tabulated, this provides a ready means of evaluation. However, for

large y the right-hand side of (11) is the difference of two small and very

nearly equal quantities, which is numerically unfortunate. To get around this

difficulty, write (11) as

(12) F(y) - <Ky)d - yR(y)) ,

where R(y) = (1 - $(y))/<Ky) is Mill's ratio. Mill's ratio satisfies the

following inequality [12]:

(13) 2/(y + /y
2
+ 2b

Q
) < R(y) < 2/(y + /y

2
+ 2bJ ,

where b = 4/tt and b =2. Let
o °°

(14) b(y) = (8/tt + 2.36y + y
2
)/(2 + .5(2.36y + y

2
))

1 3



Then b(o) = b and b(°°) = b regardless of the parameter that is 2.36
o °°

in (14), which means that the function

(15) R(y) = 2/(y + /y
2
+ 2b (y))

is a good approximation to R(y) for large and small y. The parameter that

is 2.36 was selected to give a good fit over the midrange, and the function

(16) F(y) E <Ky)(l - y R(y))

was used as an approximation to F(y) in all computations reported here.

Some algebra shows that

(17) F(y) = 2c|) (y) b(y)/(y + /y
2
+ 2b(y))

2

which eliminates the need to take the difference of two small and nearly equal

quantities. The difference |F(y) - F(y)|/F(y) never exceeds .003 . Given

the apparent robustness of NOMBAS , it is likely that simpler approximations

to F(y) than (17) would be adequate.

14
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Figure 1: Selecting the largest of ten normally distributed means of
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